Poster #164, Fault and Rupture Mechanics (FARM)
Dynamic fault weakening during earthquakes: Rupture or Friction?
Poster Image:
Poster Presentation
2021 SCEC Annual Meeting, Poster #164, SCEC Contribution #11560 VIEW PDF
ptures propagating bilaterally from a nucleation site along a circular fault. The ruptures propagated at velocities ranging from slow (~100 m/s) to supershear, and the fault weakening by the rupture-front, defined by WS = [strength drop/peak strength], is proportional to the rupture propagation velocity. WS ranged 0.08-0.58 during tiny slip-displacements of 3.7-43 microns, in agreement with similar weakening intensity in a few sets of dynamic rupture experiments. In contrast, frictional weakening, which is traditionally analyzed in constant-velocity experiments, requires slip-displacements in the range of 0.1-10 m to reach similar weakening intensity. Therefore, in terms of slip-displacements, rupture-front weakening is more efficient than frictional weakening by orders of magnitude. Further, we observed that a rupture-front transported its intense weakening from a nucleation site to the entire experimental fault, and we argue that the equivalent process can occur along natural faults. If the rupture of a tiny earthquake, e.g., M < -5, is of similar scale and intensity as the experimental ruptures, it can locally weaken the host fault, and by doing so could serve as an earthquake nucleus. However, these tiny earthquakes could nucleate large ones only if sufficient elastic energy is available in the surrounding crust for the frictional sliding dissipation. In press, EPSL, August 2021.
SHOW MORE
SHOW MORE