Poster #077, Earthquake Geology
Preliminary Mapping of Surface Fault Rupture and Ground-Deformation Features of the 2019 M6.4 and M7.1 Ridgecrest Earthquake Sequence from Post-Earthquake Lidar and Orthoimagery Datasets
Poster Image:
Poster Presentation
2021 SCEC Annual Meeting, Poster #077, SCEC Contribution #11557 VIEW PDF
ved hillshades, illuminated at 45- and 315-degrees, and supplemented with a multi-directional hillshade as the base imagery. Mapping on the lidar was done at a consistent (1:500 – 1:1000) scale, the largest scale at which imagery resolution is not degraded. Use of this large scale increases our confidence that we have only mapped features that are related to ground deformation from the earthquake. Features on the orthoimagery were mapped at a larger scale (~1:300), allowing for finer-scale features to be resolved. The surface rupture was mapped to highlight the width of deformation zones and to characterize the rupture’s expression through varying terrain, such as pre-existing fault scarps, hillslopes, fan surfaces, and relatively flat playa surfaces. Our mapping reliably resolved ruptures with tens of centimeters and more of relative vertical displacement. Areas with known surface rupture but little vertical displacement are less well-resolved on the lidar compared to the orthoimagery. Mapping using orthoimagery is limited by image resolution, variable image quality, and time available to map at a high level of detail. Thus, characterizing zones of deformation for the 2019 Ridgecrest Earthquake Sequence, important for the assessment of fault displacement hazard, appears to require a paired approach using both lidar and high-resolution aerial imagery. Although these datasets do not capture the same level of detail as low-altitude UAV imagery, our mapping is spatially more complete, improves upon previous mapping of areas with inferred surface rupture, and includes ruptures not previously identified in the field or by preliminary remote sensing.
SHOW MORE
SHOW MORE