Unified Structural Representation of the southern California crust and upper mantle

John H. Shaw, Andreas Plesch, Carl H. Tape, Michael Peter Suess, Thomas H. Jordan, Geoffrey P. Ely, Egill Hauksson, Jeroen Tromp, Toshiro Tanimoto, Robert W. Graves, Kim B. Olsen, Craig Nicholson, Philip J. Maechling, Carlos Rivero, Peter Lovely, Charles Brankman, & J. Munster

Published April 1, 2015, SCEC Contribution #2004

We present a new, 3D description of crust and upper mantle velocity structure in southern California implemented as a Unified Structural Representation (USR). The USR is comprised of detailed basin velocity descriptions that are based on tens of thousands of direct velocity (Vp, Vs) measurements and incorporates the locations and displacement of major fault zones that influence basin structure. These basin descriptions were used to developed tomographic models of crust and upper mantle velocity and density structure, which were subsequently iterated and improved using 3D waveform adjoint tomography. A geotechnical layer (GTL) based on Vs30 measurements and consistent with the underlying velocity descriptions was also developed as an optional model component. The resulting model provides a detailed description of the structure of the southern California crust and upper mantle that reflects the complex tectonic history of the region. The crust thickens eastward as Moho depth varies from 10 to 40 km reflecting the transition from oceanic to continental crust. Deep sedimentary basins and underlying areas of thin crust reflect Neogene extensional tectonics overprinted by transpressional deformation and rapid sediment deposition since the late Pliocene. To illustrate the impact of this complex structure on strong ground motion forecasting, we simulate rupture of a proposed M 7.9 earthquake source in the Western Transverse Ranges. The results show distinct basin amplification and focusing of energy that reflects crustal structure described by the USR that is not captured by simpler velocity descriptions. We anticipate that the USR will be useful for a broad range of simulation and modeling efforts, including strong ground motion forecasting, dynamic rupture simulations, and fault system modeling. The USR is available through the Southern California Earthquake Center (SCEC) website (http://www.scec.org).

Key Words
velocity structure, fault models, southern California, tomography, seismic wave propagation, strong ground motions

Citation
Shaw, J. H., Plesch, A., Tape, C. H., Suess, M., Jordan, T. H., Ely, G. P., Hauksson, E., Tromp, J., Tanimoto, T., Graves, R. W., Olsen, K. B., Nicholson, C., Maechling, P. J., Rivero, C., Lovely, P., Brankman, C., & Munster, J. (2015). Unified Structural Representation of the southern California crust and upper mantle. Earth and Planetary Science Letters, 415, 1-15. doi: 10.1016/j.epsl.2015.01.016.


Related Projects & Working Groups
Community Modeling Environment