Earthquake rate and magnitude distributions of great earthquakes for use in global forecasts

Yan Y. Kagan, & David D. Jackson

Published May 26, 2016, SCEC Contribution #8075

We have obtained new results in the statistical analysis of global earthquake catalogs with special attention to the largest earthquakes, and we examined the statistical behavior of earthquake rate variations. These results can serve as an input for updating our recent earthquake forecast, known as the ``Global Earthquake Activity Rate 1" model (GEAR1), which is based on past earthquakes and geodetic strain rates. The GEAR1 forecast is expressed as the rate density of all earthquakes above magnitude 5.8 within 70 km of sea level everywhere on earth at 0.1 by 0.1 degree resolution, and it is currently being tested by the Collaboratory for Study of Earthquake Predictability. The seismic component of the present model is based on a smoothed version of the Global Centroid Moment Tensor (GCMT) catalog from 1977 through 2013. The tectonic component is based on the Global Strain Rate Map, a ``General Earthquake Model" (GEM) product. The forecast was optimized to fit the GCMT data from 2005 through 2012, but it also fit well the earthquake locations Centre-Global Earthquake Model (ISC-GEM) global catalog of instrumental and pre-instrumental magnitude determinations. We have improved the recent forecast by optimizing the treatment of larger magnitudes and including a longer duration (1918-2011) ISC-GEM catalog of large earthquakes to estimate smoothed seismicity. We revised our estimates of upper magnitude limits, described as corner magnitudes, based on the massive earthquakes since 2004 and the seismic moment conservation principle. The new corner magnitude estimates are somewhat larger than but consistent with our previous estimates. For major subduction zones we find the best estimates of corner magnitude to be in the range 8.9 to 9.6 and consistent with a uniform average of 9.35. Statistical estimates tend to grow with time as larger earthquakes occur. However, by using the moment conservation principle that equates the seismic moment rate with the tectonic moment rate inferred from geodesy and geology, we obtain a consistent estimate of the corner moment largely independent of seismic history. These evaluations confirm the above-mentioned corner magnitude value. The new estimates of corner magnitudes are important both for the forecast part based on seismicity as well as the part based on geodetic strain rates. We examine rate variations as expressed by annual earthquake numbers. Earthquakes larger than magnitude 6.5 obey the Poisson distribution. For smaller events the negative-binomial distribution fits much better because it allows for earthquake clustering.

Key Words
Probability distributions; Seismicity and tectonics; Statistical seismology; Dynamics: seismotectonics; Subduction zones; Corner magnitude.

Citation
Kagan, Y. Y., & Jackson, D. D. (2016). Earthquake rate and magnitude distributions of great earthquakes for use in global forecasts. Geophysical Journal International, 206(1), 630-643.