Postseismic Deformation Following the Landers Earthquake, California, 28 June 1992
Zheng-Kang Shen, David D. Jackson, Yanjie Feng, Michael W. Cline, Mercedes Kim, Peng Fang, & Yehuda BockPublished June 1994, SCEC Contribution #104
Accelerated strain followed the Landers and Big Bear earthquakes, returning to the normal rate only after a period of several months. We observed this strain throughout most of southern California using the Global Positioning System (GPS). Three GPS receivers operating continuously in fixed positions at Pinyon Flat, Jet Propulsion Laboratory (Pasadena), and Goldstone all recorded postseismic deformation in a relative sense. In addition, we established 16 sites where we deployed portable receivers occasionally over a period of about 6 months near the rupture zones of the earthquakes. Anomalous postseismic displacements ranged from 55 mm near the epicenter to a few millimeters far from the fault. We modeled the displacements, using dislocation theory, as due to variable slip on the faults that were displaced at the times of the earthquakes. The model suggests that the postseismic strain released the equivalent of about 15% of the seismic moment of the mainshock. While the strain released from the upper 10 km is about the same as what can be explained by direct effects of aftershocks, the major contribution of strain release comes from the lower layer, below 10-km depth. Significant afterslip or viscous relaxation must have occurred below 10-km depth to explain the observed deformation more than 100 km from the fault. One interpretation is that high stress on the margin of the co-seismic rupture zone drives the rupture to extend itself into urbroken rock below and along the initial rupture zone.
Citation
Shen, Z., Jackson, D. D., Feng, Y., Cline, M. W., Kim, M., Fang, P., & Bock, Y. (1994). Postseismic Deformation Following the Landers Earthquake, California, 28 June 1992. Bulletin of the Seismological Society of America: Special Issue on the Landers Earthquake Sequence, 84(3), 780-791.