Poster #105, Tectonic Geodesy
Estimating geodetic locking depth and long-term slip rate along the central San Andreas Fault using Neural Networks
Poster Image:
Poster Presentation
2021 SCEC Annual Meeting, Poster #105, SCEC Contribution #11477 VIEW PDF
ently estimate long-term slip rate and locking depth along the San Andreas Fault, using geodetic data from GNSS. Because there is insufficient real-world data available for training, we train the neural network using synthetic data generated from a model of a locked strike-slip fault. Then we apply the trained neural network to 1-D profiles of geodetic observations along the San Andreas Fault. We estimate an increase of locking depth from ~ 16.5 in the northern Cholame segment to ~ 24.2 km on the southern Carrizo segment and an increase in slip rate from ~ 33.2 mm/yr to ~36.2 mm/yr on the same segments. Our estimated slip rates agree with previous studies that prescribe locking depth and are consistent with grid search results on these segments of the San Andreas Fault; however, the neural network is 2.6 times faster to execute than a grid search over the same parameter space. This work serves as a proof-of-concept for the feasibility of estimating interseismic fault parameters with a neural network.
SHOW MORE
SHOW MORE