Dynamic rupture simulation with an experimentally-determined friction law leads to slip-pulse propagation
Zhonghu Liao, & Ze’ev RechesAccepted December 2013, SCEC Contribution #1831
We simulate the dynamic rupture along a vertical, strike-slip fault in an elastic half-space. The fault has frictional properties that were determined in high-velocity, rotary shear apparatus Sierra-White granite. The experimental fault was abruptly loaded by a massive flywheel, which is assumed to simulate the loading of a fault patch during an earthquake, and termed Earthquake-Like-Slip Event (ELSE) (Chang et al., 2012). The experiments revealed systematic alteration between slip-weakening and slip-strengthening (Fig. 1A), and were considered as proxies of fault-patch behavior during earthquakes of M = 4-8. We used the friction-distance relations of these experiments to form an empirical slip-dependent friction model, ELSE-model (Fig. 1B).
For the dynamic rupture simulation, we used the program of Ampuero (2002) (2D spectral boundary integral elements) designed for anti-plane (mode III) shear fracturing. To compare with published works, the calculations used a crust with mechanical properties and stress state of Version 3 benchmark of SCEC (Harris et al., 2004). The calculations with a fault of ELSE-model friction revealed: (1) Rupture propagation in a slip-pulse style with slip cessation behind the pulse; (2) Systematic decrease of slip distance away from the nucleation zone; and (3) Spontaneous arrest of the dynamic rupture without a barrier. These features suggest a rupture of a self-healing slip-pulse mode (Fig. 1C), in contrast to rupturing of a fault with linear slip-weakening friction (Fig. 1B) (Rojas et al., 2008) in crack-like mode and no spontaneous arrest. We deduce that the slip-pulse in our simulation results from the fast recovery of shear strength as observed in ELSE experiments, and argue that incorporating this experimentally-based friction model to rupture modeling produces realistic propagation style of earthquake rupture.
Citation
Liao, Z., & Reches, Z. (2013, 12). Dynamic rupture simulation with an experimentally-determined friction law leads to slip-pulse propagation. Presentation at 2013 AGU Fall Meeting.