Intellectual Merit
|
SCEC has supported community code exercises on verifying and validating spontaneous dynamic earthquake rupture simulations [Harris et al., 2009; Barall and Harris, 2015; Harris et al., 2018] and comparing Earthquake Simulators [Dieterich and Richards-Dinger, 2010; Tullis et al., 2012]. Dynamic rupture simulations have allowed us to investigate the underlying physics of what influences ground motion, but they are limited to single-event scenarios with imposed artificial prestress conditions and ad hoc nucleation procedures. In contrast, Earthquake Simulators can produce long-term earthquake sequences but often adopt semi-kinematic assumptions and are missing key physical features that could potentially dominate earthquake and fault interaction, such as stress transfer generated by dynamic waves, aseismic slip within fault segments, and inelastic responses. A new generation of numerical SEAS models are thus needed to simulate longer periods of earthquake activity than single-event simulations but with the same level of computational rigor, while incorporating physical factors important over longer time scales. These verified SEAS models would better inform initial conditions and nucleation procedures for dynamic rupture simulations and provide physics-based approximations for larger-scale, longer-term earthquake simulators. The results and lessons from the recent benchmarks prepare us for the next benchmark problems in which we plan to incrementally incorporate additional physical factors, including fluid effects, alternative friction laws, and increased complexity in the fault geometry and bulk material response, particularly in 3D problems, which should advance the state-of-the-art computational capabilities in our field.
|
Broader Impacts
|
The SEAS initiative has grown in its fourth year at SCEC, with strides in community building, developing new code verification benchmarks, organizing workshops, and promoting visibility of SEAS modeling in the SCEC community and beyond. For all our code verification efforts, the workshops have proven to be particularly valuable in providing an ideal platform for all modelers to share and follow recent scientific progress in the field, discuss details in benchmark design/results, and collectively decide the directions of our future efforts, with considerable inputs from students and early career scientists. |