The Mendocino Triple Junction: Faulting Complexity Onshore and Offshore

Kathryn Materna¹, with contributions from: Will Yeck², David Shelly², Fred Pollitz², Jessica Murray², Dara Goldberg², Jason Patton³

Talk Outline

- MTJ components
- Parallels to Special Fault Study Areas
- Open questions:
 - Implications of vertical deformation across timescales
 - Strain partitioning across the triple junction
 - Rupture behavior in an interconnected system
 - Fault geometry
- Future opportunities in seismology, geodesy, etc.
- Opportunities at the CRESCENT and SCEC border

Angster et al., 2020

MTJ Components

MTJ Components

3. Gorda Intra-plate ?? mm/yr

2. MFZ Strike-slip ~44 mm/yr

1. SAF-parallel Strike-slip ~40 mm/yr

MTJ Components

5. CSZ convergence ~31 mm/yr

4. Forearc oblique faulting ?? mm/yr

3. Gorda Intra-plate ?? mm/yr

2. MFZ Strike-slip

~44 mm/yr

1. SAF-parallel Strike-slip ~40 mm/yr

Parallels to Special Fault Study Areas

UCERF3

1) What are the implications of high uplift rates at MTJ?

Merritts and Bull, 1989; Snyder et al., 2000; Clubb et al., 2020

Key Points:

- MTJ Quaternary uplift rates among highest in US, ~ 4 mm/yr in King Range.
- Consistent with geomorphic evidence from channel steepness and hillslope geometry.
- Uplift pulse moving northward via "Mendocino Crustal Conveyor".

1) What are the implications of high uplift rates at MTJ?

Quaternary (100ka)

Decadal (1930s-present)

Key Points:

- How does the budget of vertical deformation produce uplift over many earthquake cycles?
- Geodetic uplift contains earthquake cycle effects, groundwater loading, GIA, sedimentation processes.

Modeling 3D interseismic velocity field with VE model

Patton et al., 2023

Materna, Pollitz, et al., 2023

Key Findings:

- Combination of megathrust coupling (80%) and oblique slip-deficit on forearc faults (20%) accommodates convergence, reproduces interseismic subsidence at HB.
- SAF system ~45 mm/yr total

2) How does strain transfer into/out of the triple junction?

3) What types of dynamic fault interactions occur at MTJ?

4) Geometry: where even is the SAF? And CSZ?

Modified from Carver, 1992

Opportunities: what can new datasets tell us about MTJ?

- EEW System expansion → new opportunities to understand rupture characteristics, wave propagation, extreme ground motion, velocity model
- DAS offers high-resolution imaging, which could help understand low-slip-rate or seismically quiet faults
- Geodetic imaging improvements in past decade

Lindsay et al., in prep.

Summary and broader discussion questions

- Key questions and opportunities:
 - Implications of vertical deformation across timescales
 - Strain partitioning across the triple junction
 - Rupture behavior and fault interactions in an interconnected system
 - Fault geometry of major and minor structures
- Opportunities for future collaboration with CRESCENT

