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Summary High-frequency characteristics that are challenging to explain
The Mw7.8 Kahramanmaras earthquake was well recorded by the regional strong motion network operated ¢ Loss of horizontal polarity at high-frequencies Also check Poster Group B 004, Ben-Zion et al.
by the Turkey Disaster and Emergency Management Authority (AFAD). Approximately 20 stations are locat- 0.6 ———— 0.6 ————
ed within 10 km of the East Anatolian Fault (EAF) surface rupture, south of the Narli-EAF junction. These Station 3142 A p—— Station 3142 — |
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stations are distributed relatively evenly along the fault strike.

o
N
o
N

Due to their proximity, these records provide an unprecedented opportunity to directly investigate high-fre-
guency radiation mechanisms at the rupture front—a crucial yet unresolved question—with minimal influ-
ence from path effects. We found most high-frequency energy arrived at these stations simultaneously with
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the low-frequency signals, suggesting similar source locations. However, seismic radiation higher than ~0.3 oal Y || _ |
Hz displays distinct characteristics, including loss of radiation pattern and reduced correlation between hori- 0.05-0.3 Hz 0.3-10 Hz 't [avewl]  Recorded ground motions
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A state-of-the-art dynamic rupture model, constrained by surface rupture, aftershock location, coseismic de- _ _ _ - _
formation, low-frequency ground motion, regional stress field, and 3D velocity structure, could not reproduce  ® Loss of between-component correlation at high-frequencies e Energy partition across frequencies
these high-frequency ground motion characteristics. These inconsistencies imply a need to update current T — — e e .
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earthquake source representations for modeling high-frequency radiation. Our results provide quantitative 0.8 0.4 Hz | Average | - 0.8} 0.4 Hz | Average. |- 0.4 Hz !
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e Stations recorded rupture front radiation with minimal influence from path effects. © - O -04f ! - :
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on VA g 5 ol _ Dynamic rupture model constrained by “LF data” can’t explain HF radiation
¢ Ky 7 ez Narli-EAF junction § o0} - e (Li et al., in review) A SeisSol dynamic rupture model constrained by surface rupture, aftershock location,
bl A 5 coseismic deformation, low-frequency ground motion, regional stress field, and 3D velocity structure.
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_ o _ o _ _ _ Novel insights from the M7.8 records of these close-to-fault stations:
¢ High-frequency radiation concurrent with slip rise. e Horizontal & vertical acceleration spectra _ o
e Due to stations’ great proximity to the fault (<10km), path-effects are minimal. The fact that most HF radiation is
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2 T station 3142. E 7 102 RESALTETETEE B s s B G T T e concurrent with LF radiation suggests that the uncharacterized HF radiation we observed is more likely generated
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, | : concurrently at or near the rupture front as the slip occurs, rather than from scattering sources far away.
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' e \We observed a loss of horizontal polarity and between-horizontal-component correlation at high frequencies,
: with transition frequency both around 0.3-0.5 Hz. Multiple mechanisms may explain these, more analysis is needed.

e Due to stations’ proximity, we may directly estimate radiation energy with signal power. The uncharacterized HF ra-
diation >~0.4Hz takes up ~40% of total radiation. The number can be used to quantitatively test HF hypotheses.
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ok - _ Which high-frequency radiation hypotheses are capable of explaining the M7.8 data? |
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