Motivation Slow-slip events due to switching of healing mechanisms

Earthquake cycles are governed by dynamically evolving friction on geologic faults. Laboratory Transition of healing mechanisms results in a transition from velocity-weakening to velocity-strengthening with
experiments reveal a three-regime frictional behavior for various rocks. The classic rate- and increasing velocity at low temperature ((_)-200 °C). T_his velocity-dep_endence, controlle_d by the activation energy
state-dependent friction law fails to capture the full range of observed behaviors. Moreover, the (Hy) and temperature (T,,) of the healing mechanism, may explain shallow slow-slip events, as observed in

empirical nature hinders extrapolation of lab results to large-scale natural faults. To address these Hikurangi (85-230 “C), Nankai (85-210 "C), and Costa Rica (12-60 °C) (Saffer & Wallace, 2015). This is similar to
previous implementation of cut-off velocity (Shibazaki & lio, 2003) and velocity-dependent frictional parameters (Im

limitations, we propose a new simulator based on a physical friction model to extrapolate the inferred et al., 2020), but this model shows a delayed transition due to finite slip required for state evolution. Previous

rheology from laboratory experiments and to understand earthquake dynamics. models omit the temperature dependence of friction. However, the cut-off velocity increases with temperature,
Obaraand Kato, 2016 likely implying depth-dependent characteristics of slow-slip events, or even making this mechanism difficult to
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Constitutive law

The constitutive behavior of rocks measured in lab experiments in quasi-static, isobaric condition is
captured a constitutive law that include competitions of multiple deformation and healing
mechanisms (Barbot, 2022, 2023)
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V/Vo = (/m—5> <d_0> XP | T ( T T 1) + (/m—5> (d_()) Xp T (T T 2) Velocity increases triggered by seismic events can embrittle the nominally creeping section down-dip
) O ] e of the seismogenic zone. This embrittlement facilitates ruptures to propagate beyond the nominal
The contact area, which controls frictional strength, evolves as a result of healing and rejuvenation, seismogenic limit. Subsequently, the down-dip limit of seismicity rapidly migrates up-dip following the
; . T /1 N . o /1 N1 v mainshock. Enhanced dynamic weakening at fast slip rates (e.g. thermal pressurization) may also
S = 7l exp |-t ( > | °_exp |- —2 ( > , contribute to deep-penetrating ruptures (Jiang and Lapusta, 2016).
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