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Overview of Talk 

• The emergence of physics-informed deep learning  

• Recent advances and applications with PiNNs 

• Inversions with rate-and-state friction 

• Advantages, limitations (a lot) and theoretical needs 

• Future directions and areas ripe for research 



 

Mousavi and Beroza (Science, ’22) 

Explosion of Deep-Learning in Seismology

ML excels in presence of large data and neural-network (NN) common. Deep NN 
developed as new (or alternative method) to learn complex patterns and relationships, 
understand multiscale features, possibly better/faster.



 

Historically: artificial neural networks (ANNs) developed to mimic neurons in the human brain, 
which were understood to perform their functions through a massive inter-connected network 
known as synapses. 



 

Network is trained so that outputs are 
“close” to known data, i.e. we minimize a 
loss function based on some measure of 
error. 

LOSS 

Trained to learn from data and experience:  

Surrogate model of 
bio/physical system 

Historically: artificial neural networks (ANNs) developed to mimic neurons in the human brain, 
which were understood to perform their functions through a massive inter-connected network 
known as synapses. 



Arrowsmith et al. (Rev. Geophys., ’22) 

Science Drivers:  

• “What is an earthquake?” — NASEM. 2020. 

• Improve the predictive analyses of seismicity 
and ground motion 

• Make progress by combining physics-
based, statistical, and machine learning — 
SCEC 2024 Research Plan 

Persistent Challenges:  
Direct observations of Earth’s interior largely 
inaccessible, great EQ infrequent. 

“Discoveries increasingly will come 
from the analysis of large datasets, new 
developments in inverse theory, and procedures 
enabled by computationally intensive 
simulations” — Bergen et al. (Science, 2019)

Sensors and permanent stations across the US:



 

Mousavi and Beroza (Science, ’22) 

Deep-Learning in Seismology

Basic NN don’t impose physics.  In cases where system is only data driven, loss function 
usually defined via the difference between NN outputs and target data. How to 
integrate physics and could this supplement limited data? 



• Option 1: train network on outputs from a classical method or traditional numerical method 
(e.g. finite difference), expensive training. Example of physics-guided neural networks (PgNNs). 

• FOCUS OF THIS TALK: physics-informed neural networks (PiNNs) - “data” is simply collocation 
points!  

Other physics-based DL methods: 
• physics-encoded neural networks (PeNNs) 
• DeepONets

Devries et al. (GRL, ’17) 

Recent efforts to Integrate Physics into NN



Physics-informed Neural Networks (PiNNs) 

Arose out of successes of DNN, which are purely data-driven, desire to derive a surrogate 
model whose outputs are constrained by known physics but with limited data and no 
need for alternative forward methods. 



Feed-forward Neural Networks (FFNN) with  hidden layers 

Let  be the network input. Then 

 

defines a feed-forward, deep neural network  (of depth ) by  

.  

Here is a collection of activation functions along with a sequence of trainable 
network parameters (weights and biases)  where  for each 

. 

L

x ∈ ℝn

ℓ0 = x,
ℓk = φk(Wkℓk−1 + bk)  for 0 < k < L,

𝒩 : ℝn → ℝd L

𝒩(x; θ) = WLℓL−1 + bL

{φi}L
i=1

{θi}L
i=0 θk = (Wk, bk)

0 ≤ k ≤ L



The PiNN then extends the FFNN by considering physical governing laws described 
by a parametric partial differential equation (PDE) of the form: 

 , 

where  is a nonlinear differential operator with coefficients , 

e.g. acoustic wave equation, ,  , where  is the wave speed. 

 

ℒ[u; λ] = 0, x ∈ Ω, t ∈ 𝒯

ℒ λ

ℒ =
∂2
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− c2Δ λ = c c



The PiNN then extends the FFNN by considering physical governing laws described 
by a parametric partial differential equation (PDE) of the form: 

 , 

where  is a nonlinear differential operator with coefficients , 

e.g. acoustic wave equation, ,  , where  is the wave speed. 

tl;dr: the cost/loss function is then defined (at least partially) by .  Note here 
that we have assumed .

ℒ[u; λ] = 0, x ∈ Ω, t ∈ 𝒯

ℒ λ

ℒ =
∂
∂t

− c2Δ λ = c c

ℒ[𝒩; λ]
𝒩 ≈ u



The general representation of the cost function is given by 
  

 

Data could be observables or known boundary data (or both). 

C = MSEu + MSEf

Mean-squared error at known data points
PDE residual on a set of collocation 
points within the domain 



PDEs in two contexts 
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Data-driven inference 
(assume  are known, 
need to find ).  
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PDEs in two contexts 

Forward problems             vs.            Inverse problems 

Data-driven inference 
(assume  are known, 
need to find ).  

λ
u

Data-driven identification of PDEs 
(given some info on , try to learn ).  u λ

“Traditional” 
methods (Bayesian 
etc.), require many 
forward runs 

PiNNs, code 
only slightly 
modified from 
forward 
problem 

PiNNs offer both alternative solution strategies AND methods for addressing new problems.  

Tons of work in this area for DECADES… high-order accurate, provably 
convergent, massively parallel linear algebra computations (e.g. ).  Ax = b

Lots of work here too 

“Traditional” 
methods (Finite 
Difference etc.) for 
IBVP might include  
data but cannot 
over-specify. 

PiNNs - can 
include as much 
data as desired, 
solve different 
types of 
problems! 



Raissi et al. (JCP, ’18) 

Fundamentals of 
PiNNs attributed to 
2018 seminal paper for 
both forward and 
inverse problems. 

Training (collocation) 
data-points 

incompressible 
flow and 
dynamic vortex 
shedding  



PiNNs for forward problems in seismology applications 

Some recent advances/applications: 

Moseley et al. (ACM, ’23) Smith et al. (IEEE, ’21) 

(FBPINNs) shown to be effective in solving multi-scale 
problems.

Eikonal equation which allows

for rapid determination of the travel time 
between any two points.



Raissi et al. (JCP, ’18) 

Raissi et al. (2018) highlights PiNNs for inverse problems 

Navier-Stokes: 

Recovered both solution and coefficients of governing equation 



Using PiNNs for inverse problems: inferring depth-dependency of frictional parameters. 

Time (Days)
100 300 400200 500

2012 Cascadia SSE
VW/se

ism
ic zo

ne
Oceanic crust/subducting slab sh

allo
w cr

eep/SSEs

sta
ble/creep

SSE/ETS zo
ne

neutra
lly

 st
able

su
rf

ac
e 

di
sp

la
ce

m
en

t

15km 35km 55km

Wedge

Dip

Coastl
in

e

Asperities fluids

Edited from Wirth et al. (’22) 

Slip thought to correlate with depth and the distribution of asperities along the fault. Understanding the 
physical mechanisms for diversity of slip styles (from slow slip to dynamic rupture) important for hazard 
mitigation, but frictional properties largely unknown. 




Model set-up: posed as an IBVP (PDE + BC + IC): 

 

where  are differential and boundary operators parameterized by ,  and  are 
known source terms.  

  

  

 

ℒ [u; λ] = k,  in Ω,

ℬ [u; λ] = g,  on ∂Ω

ℒ, ℬ λ k g



Model set-up: posed as an IBVP (PDE + BC + IC): 

 

where  are differential and boundary operators parameterized by ,  and  are 
known source terms.  

E.g. 1D wave equation with displacement BC and wave speed :  

 

 

Then  and  is the identity operator.

ℒ [u; λ] = k,  in Ω,

ℬ [u; λ] = g,  on ∂Ω

ℒ, ℬ λ k g

c

utt = c2uxx + k(x, t), x ∈ [0,1], t ≥ 0

u(0,t) = g0(t)
u(1,t) = g1(t)

ℒ =
∂2

∂t2
− c2 ∂2

∂x2
ℬ



Model set-up: Rate-and-State Friction (RSF) 

Fault interface condition: 

      ,           

State variable   evolves according to 

 

τ = σ̄n [f0 + a ln ( V
V0 ) + b ln ( V0ψ

Dc )]

ψ

dψ
dt

= G(V, ψ)

ψ(0) = ψ0

(Dieterich, 1979; Ruina, 1983; Marone, 1998).

•  is shear stress 
•   is slip rate  
•   the effective normal stress 
•  is a reference friction coefficient for sliding at 

speed  
•   is the characteristic slip distance 
•  and  are material parameters

τ
V
σ̄n
f0

V0
Dc
a b



Rucker and Erickson (CMAME, ’24) 

General PiNN architecture 

Assume  and consider  collocation points chosen in volume and  
on the boundaries. An additional connected network computes state evolution loss.  

u(x) ≈ 𝒩(x; θ) N ̂Ω N∂

Cost function: 
(mean-squared-error, 
MSE); could also 
include data. 



Inversions with rate-and-state friction 

Additional connected network to 
learn depth-dependency of  a − b

Problem set-ups: 
• 2D antiplane 
• Elastodynamic 
• Manufactured solution allows for ground truth 



Inversions with rate-and-state friction 
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Rucker and Erickson (CMAME, ’24) 

Findings: 
• MSE non-

monotonically 
decreasing 

• Connected network 
learns  faster 
than PDE solution 

• Helps to have 
ground truth, in 
practical 
applications won’t 
have this 

a − b

- Computed in data-parallel, single-node GPU, in Python using PyTorch 
- 20 min, comparable to forward solve 



High-resolution simulation of the 2004 Sumatra-Andaman earthquake, Uphoff et al. 
(SC, ’17) 

PiNNs compared to traditional 
methods: 

e.g. SeisSol (traditional): high order 
accuracy on tetrahedral meshes, 
complex fault geometries and material 
properties, regularly run on 
supercomputers, etc.



High-resolution simulation of the 2004 Sumatra-Andaman earthquake, Uphoff et al. 
(SC, ’17) 

Some potential advantages of PiNNs  
• Mesh-free 
• May handle complex interfaces more easily 
• Suitable for ill-posed inverse problems 
• Forward/inverse same computational 

method, inverse problems may be key 
• Learning of of multi-scale physics? 

• Transfer Learning 
• Auto satisfy absorbing BC (Rasht-Behesht et al., 2022) 
• Solutions to new problems (e.g. alternative BC) 
• Learning of physics itself - coefficients of a PDE or Deep 

Neural operators (learn PDE operator itself)

PiNNs compared to traditional 
methods: 

e.g. SeisSol (traditional): high order 
accuracy on tetrahedral meshes, 
complex fault geometries and material 
properties, regularly run on 
supercomputers, etc.



Limitations and Needs 

• Not obviously better than traditional methods for 
traditional forward problems (Cuomo et al., 
Grossman et al.), except maybe in higher 
dimensions, not more accurate. 


• Loss function - convex?  How to quantify errors? 
What about convergence? How to initialize 
weights, pick collocation points?


• How to make sense of output? 

• Model reproducibility, verification, validation 

and valuation

• UQ - although some has been done here 

(BPiNNs), same with error estimates


“Math Lady Meme” 



Future directions and possibilities 

• Somebody needs to sit down and quantify the computational benefits (or lack of) when comparing 
PiNNs to traditional numerical methods (e.g. finite difference), for both forward (follow up on 
Grossman) and inverse problems. 

  
• What is the computational complexity, memory requirements etc. for two algorithms to say, reach 

the same level of accuracy?  

• More work needs to be done in terms of UQ 

For earthquake science:  

• Explore learning of multi-scale processes 
• SCEC benchmark exercises? 

• Sensitivity analysis, in particular with well-instrumented lab studies 
• ??? 
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*Please visit SCEC Group A poster #115 (Rucker and Erickson) 

Questions: bae@uoregon.edu, crucker@uoregon.edu 


