

SCEC Annual Meeting: Session 7: Computational Earthquake Science

Challenges, opportunities, and discoveries using large-scale distributed acoustic sensing arrays

Ettore Biondi*, Yan Yang, Jiaqi Fang, Jiuxun Yin, Weiqiang Zhu, Jiaxuan Li, Ethan F. Williams, Zhongwen Zhan

April 14th, 2022

~100 km

What is the catch?

60s @ 100 Hz

- **100 stations' recordings: ~2.2 MB**
- **10k DAS channels: ~0.22 GB**

How about storing data for the ~20000/yr earthquakes?

A single 10k-channel DAS would need:

~4.3TB/yr

Conventional networks and DAS

IRIS **IRIS https://www.infrapedia.com/app 9**

Determine algorithm and relevant data portion

Identify science questions

Bottom-Up Approach

Noise interferometry

Noise interferometry with DAS

Noise interferometry with DAS

• **The amount of data to be processed**

 $x_A(t)\otimes x_B(t) = G(x_A; x_B) = X_A(\omega) * X_B(\omega)$

Single-frequency 1 month data: 4.5 TFlops

GPU V100: 15.7 TFlops

```
def torch xcorr(signal 1, signal 2):
    if len(signal 1.shape)\leq 2 | len(signal 2.shape)\leq 2:
        print('input dimension must be ntrace*npts !')
        return 0
```

```
else:
```

```
signal length = signal 1.\text{shape}[-1]x cor sig length = signal length*2 - 1
fast length = nextpow2(x cor sig length)
```

```
# The last signal ndim axes will be transformed
fft 1 = \text{fft.rfft}(\text{signal 1}, \text{fast length}, \text{dim}=-1)fft 2 = \text{fft.rfft}(\text{signal 2}, \text{fast length}, \text{dim=1})
```

```
# Take the complex conjugate of one of the spectrums.
# Which one you choose depends on domain specific conventions
fft multiplied = torch.conj(fft 1) * fft 2
```
back to time domain. prelim correlation = fft.irfft(fft multiplied, dim =- 1)

Shift the signal to make it look like a proper crosscorrelation, # and transform the output to be purely real final result = torch.roll(prelim correlation, fast length//2, dims=-1)[:, fast length//2-x cor sig length//2:f

return final result

C PyTorch

- **The number of channels to cross-correlate**
	- **Process subarrays**
	- **Spatial desampling for seismic scales: from 10m to 200m!**

• **Storing CCs for time-lapse studies Common-offset channel pairs for entire array Scale of interest: ~50-200m**

• **Storing CCs for time-lapse studies Common-offset channel pairs for entire array Scale of interest: ~50-200m**

 $\mathcal{O}(N^2)$ => $\mathcal{O}(N)$

~100 km

Conventionally, teleseismic waves are used for 2D back-projection imaging

Conventionally, teleseismic waves are used for 2D back-projection imaging

Ishii et al., 2005 22

Designed dense arrays allow 3D back-projection of high-frequency energy

Allmann and Shearer, 2007 **23**

Would DAS help image high-frequency energy?

Back-projection imaging with DAS

What are the main challenges?

- **Traveltime computation on 3D** volume \Rightarrow 10⁶ – 10⁷ N_n
- Conventional station $N_d \approx 10^2$ **DAS** $N_d \approx 10^4$
- **Computational complexity** $O(N_v * N_d)$
- **Each grid point independent Using GPUs:** $O(N_d)$

Imaging the high-frequency rupture process!

How do we use DAS event data?

~8000 events P- and S-wave picks:

Stations => 1.6 million

DAS => 160 millions

A DAS picking algorithm does not exist!

In the last 1.5 years, we recorded more than 21000 earthquakes!

@100Hz => 4.2TB

Incredible dataset but challenging to tackle computationally!

4.2TB of data

GPU memory ~ 16-32 GB Single event: ~250 MB

Very few training examples can be stored!

Employing a patching approach Faster training and fewer model parameters!

Incredible dataset but challenging to tackle computationally!

4.2TB of data

GPU memory ~ 16-32 GB Single event: ~250 MB

Very few training examples can be stored!

Local event Regional event

3D tomography with DAS

What What Shate World's
 Shate
 What exascale supercomputer

The record-breaking machine can process more than a quintillion calculations per second.

 $Q_{DD} = \begin{bmatrix} 1 & -1 & \bullet & \bullet & \bullet & 0 \\ 1 & \bullet & \bullet & -1 & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0 & \bullet & 1 & \bullet & \bullet & -1 \end{bmatrix}$

Common size $N \approx 10^5$ Size with DAS $N \approx 10^9$ **Computational complexity** $O(N^3)$ **Lower-bound runtime: ~31 years**

What about using TomoDD with this dataset?

Common size $N \approx 10^5$ Size with DAS $N \approx 10^9$

3D tomography with DAS

Eikonal equation: Matrix-free iterative inversion strategy:

Biondi et al., in prep 37

Initial guess from CVM

Inverted model

NORTH LABORATO The Long Valley caldera: DAS tomography

MODELCAL LABORATE The Long Valley caldera: DAS tomography

OLOGICAL LABOR The Long Valley caldera: DAS tomography

- **Conclusions**
- **DAS provides ultra-dense spatial arrays recording seismic signal with unprecedented level of details. However, DAS data volumes represent a novel challenge for the seismology community**
- **We are taking a bottom-up approach in which we learn how to deal with this challenge by solving science problems**
- **Proper leveraging of modern architectures and computational tools are making DAS an incredibly resourceful tool**
- **Such projects are helping identify relevant DAS portions to design compression and selection algorithm for long-term storage**

Acknowledgements

- **We would like to thank OptaSense for the constant support; in particular, we thank Martin Karrenbach, Victor Yartsev, and Vlad Bogdanov.**
- **We also thank the California Broadband Cooperative for providing access to the Digital 395 telecommunication fibers.**
- **We also thank the SCEC organizers for the invite to present our work.**

Acknowledgements

Yan Yang

Jiaqi Fang

Ethan Williams

James Atterholt

Jiaxuan Li

Jiuxun Yin

Weiqiang Zhu

Thank you for your attention!

April 14th, 2022