

SCEC Annual Meeting: Session 7: Computational Earthquake Science

Challenges, opportunities, and discoveries using large-scale distributed acoustic sensing arrays

Ettore Biondi^{*}, Yan Yang, Jiaqi Fang, Jiuxun Yin, Weiqiang Zhu, Jiaxuan Li, Ethan F. Williams, Zhongwen Zhan

April 14th, 2022

Conventional stations and DAS

Conventional stations and DAS

Conventional stations and DAS

~100 km

What is the catch?

60s @ 100 Hz

- 100 stations' recordings: ~2.2 MB
- 10k DAS channels: ~0.22 GB

How about storing data for the ~20000/yr earthquakes?

A single 10k-channel DAS would need:

~4.3TB/yr

Conventional networks and DAS

Conventional network

IRIS

https://www.infrapedia.com/app

~15.7TB/day

Determine algorithm and relevant data portion

Identify science questions

Bottom-Up Approach

Noise interferometry

Noise interferometry with DAS

Noise interferometry with DAS

The amount of data to be processed

 $x_A(t) \otimes x_B(t) = G(x_A; x_B) = X_A(\omega) * X_B(\omega)$

Single-frequency 1 month data: 4.5 TFlops

GPU V100: 15.7 TFlops

```
def torch_xcorr(signal_1, signal_2):
    if len(signal_1.shape)<2 | len(signal_2.shape)<2:
        print('input dimension must be ntrace*npts !')
        return 0</pre>
```

else:

signal_length = signal_1.shape[-1]
x_cor_sig_length = signal_length*2 - 1
fast_length = nextpow2(x_cor_sig_length)

The last signal_ndim axes will be transformed
fft_1 = fft.rfft(signal_1, fast_length, dim=-1)
fft_2 = fft.rfft(signal_2, fast_length, dim=-1)

Take the complex conjugate of one of the spectrums. # Which one you choose depends on domain specific conventions fft_multiplied = torch.conj(fft_1) * fft_2

back to time domain.
prelim_correlation = fft.irfft(fft_multiplied, dim=-1)

Shift the signal to make it look like a proper crosscorrelation, # and transform the output to be purely real final result = torch.roll(prelim correlation, fast length//2, dims=-1)[:, fast length//2-x cor sig length//2:f

return final_result

O PyTorch

- The number of channels to cross-correlate
 - Process subarrays
 - Spatial desampling for seismic scales: from 10m to 200m!

Storing CCs for time-lapse studies Common-offset channel pairs for entire array Scale of interest: ~50-200m

 $\mathcal{O}(N^2) \Longrightarrow \mathcal{O}(N)$

Storing CCs for time-lapse studies Common-offset channel pairs for entire array Scale of interest: ~50-200m

 $\mathcal{O}(N^2) \Longrightarrow \mathcal{O}(N)$

~100 km

Back-projection imaging

Conventionally, teleseismic waves are used for 2D back-projection imaging

Back-projection imaging

Conventionally, teleseismic waves are used for 2D back-projection imaging

Ishii et al., 2005

Designed dense arrays allow 3D back-projection of high-frequency energy

Allmann and Shearer, 2007

Would DAS help image high-frequency energy?

Back-projection imaging with DAS

Li et al., 2022

What are the main challenges?

- Traveltime computation on 3D volume $\Rightarrow 10^6 10^7 N_v$
- Conventional station $N_d \approx 10^2$ DAS $N_d \approx 10^4$
- Computational complexity $O(N_v * N_d)$
- Each grid point independent Using GPUs: $O(N_d)$

Imaging the high-frequency rupture process!

~8000 events P- and S-wave picks:

Stations => 1.6 million

DAS => 160 millions

A DAS picking algorithm does not exist!

In the last 1.5 years, we recorded more than 21000 earthquakes!

@100Hz => 4.2TB

Incredible dataset but challenging to tackle computationally!

4.2TB of data

GPU memory ~ 16-32 GB Single event: ~250 MB

Very few training examples can be stored!

Employing a patching approach Faster training and fewer model parameters!

Incredible dataset but challenging to tackle computationally!

4.2TB of data

GPU memory ~ 16-32 GB Single event: ~250 MB

Very few training examples can be stored!

Local event

Regional event

US's Frontier is the world's first exascale supercomputer

The record-breaking machine can process more than a quintillion calculations per second.

Common size $N \approx 10^5$ Size with DAS $N \approx 10^9$ Computational complexity $\mathcal{O}(N^3)$ Lower-bound runtime: ~31 years

3D tomography with DAS

What about using TomoDD with this dataset?

Common size $N \approx 10^5$ Size with DAS $N \approx 10^9$ Computational complexity $\mathcal{O}(N^3)$

3D tomography with DAS

Eikonal equation:

Matrix-free iterative inversion strategy:

Lee et al., 2014

2.50

The Long Valley caldera: DAS tomography

The Long Valley caldera: DAS tomography

The Long Valley caldera: DAS tomography

- DAS provides ultra-dense spatial arrays recording seismic signal with unprecedented level of details. However, DAS data volumes represent a novel challenge for the seismology community
- We are taking a bottom-up approach in which we learn how to deal with this challenge by solving science problems
- Proper leveraging of modern architectures and computational tools are making DAS an incredibly resourceful tool
- Such projects are helping identify relevant DAS portions to design compression and selection algorithm for long-term storage

- We would like to thank OptaSense for the constant support; in particular, we thank Martin Karrenbach, Victor Yartsev, and Vlad Bogdanov.
- We also thank the California Broadband Cooperative for providing access to the Digital 395 telecommunication fibers.
- We also thank the SCEC organizers for the invite to present our work.

Acknowledgements

Yan Yang

Jiaqi Fang

Ethan Williams

James Atterholt

Jiuxun Yin

Weiqiang Zhu

Thank you for your attention!

April 14th, 2022