Potentials and challenges with single-grain luminescence dating—re-evaluating our assumptions

Sourav Saha, Seulgi Moon, Nathan D. Brown, Ed J. Rhodes, & Sally F. McGill

sahasv@mail.uc.edu

Luminescence (light) dating is burial dating technique

al., 2018) and luminescence characteristics used for provenance (Sawakuchi et al.,

Gray et al. (2019)

2018).

K-feldspars

Quartz

Rapid bleaching

Trapped charge reduction by daylight in environment

Gradual dosing

During burial, trapped charge builds up by ionizing radiation exposure

OSL measurement

Trapped charge evicted by stimulating light recombines and emits OSL

Rhodes (2011)

Burial age = $\frac{\text{Equivalent dose}(De)}{\text{Dose rate}(D_R)}$

Single-grain luminescence edges over the multigrain single-aliquot

- Post-depositional mixing as a dominant source of equivalent dose (De) scatter
- Statistical treatments are insufficient for multigrain single-aliquot
- 'Phantom' doses are an inevitable consequence of the 'averaging' effects of multi-grain De analysis

- Southern California quartz are dimmer
- K-feldspar are bright; suitable for dating

Feldspar single-grain's complicated bleaching (signal resetting) history:

Exposure duration, transport medium

Gray et al. (2019)

- Bleaching takes several minutes to hours (sec: Quartz)
- Concentrated flows dominate in the semi-arid southern
 California
- K-feldspar grain population in such transport medium often produces multiple single-grain subpopulations at <u>a higher</u> <u>temperature</u>

Feldspar single-grain's complicated bleaching (signal resetting) history:

Bleachability of the targeted signal

Dose response curve IR₅₀ and post-IR IR₂₂₅

Romanian loess sample Vasiliniuc et al. (2012)

Post-IR IRSL dating technique

- IR₅₀: unstable, shallower traps, easy to bleach, but fade (signal loss) less reliable
- IR₂₂₅: more stable, deeper trap, fade less to none, but often hard to bleach reliable

We can utilize these characteristics to date the most recent and older depositional events

Potentials of K-feldspar SG

Introduction

☐ Effectiveness of SG luminescence: Lower Mission Creek

I. Prehistoric earthquakes on the Banning strand of the San Andreas fault, North Palm Springs, California

[Castillo, B., McGill1, S.F., Scharer, K.M., Yule, J.D., McPhillips, D., McNeil, J., **Saha, S.,** Brown, N.D., and Moon, S. 2021. Geosphere 17, 1–26. https://doi.org/10.1130/GES02237.1]

- ☐ Additional info. between events from the same sample: Lower & upper Mission Creek
- II. Holocene depositional history inferred from single-grain luminescence ages in southern California, North America.

[Saha, S., Moon, S., Brown, N.D., Rhodes, Scharer, K.M., McPhillips, D., McGill, S. F., and Castillo, B. A. 2021. Geophysical Research Letter 48, e2021GL092774. https://doi.org/10.1029/2021GL092774]

Quaternary fault map of the Mission Creek: 18th Avenue paleoseismic site (EA) on the Banning strand of the SSAF

Stratigraphic logging, photomosaic, & 17 luminescence samples are collected from distinct strat units of both walls

8 event horizons were dated using 17 luminescence (754 K-feldspar single-grains) & 33 radiocarbon samples (charcoals)

Castillo et al., (2021)

- Luminescence samples at the UCLA luminescence lab
- ¹⁴C samples at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory

CAM, MAM, FMM – Finding the suitable subpopulation(s)

- OD $<15\% \rightarrow CAM$ (Rhodes, 2015)
- OD >15% → MAM

Youngest subpopulation

(Galbraith and Green, 1990)

OD >15% → FMM
 multiple subpopulations

(Galbraith and Green, 1990; Galbraith and Laslett, 1993; Galbraith, 2005)

- Most recent event = CAM or MAM
- Older depositional history = FMM

i.e., distinguish **two or more component mixture** (k age components)

Castillo et al. (2021); Saha et al. (2021)

Paleoseismic dating results: Average RI of 380-640 yr (1-5 EQ)

- MAM/CAM ages corresponds well with younger detrital ¹⁴C charcoal ages at ±1 σ (<3 ka deposits)
- Most recent events are dated successfully
 - ~5 surfacerupturing
 earthquakes since
 ~3 ka and
- Or ~8 earthquakes since ~7.1 ka

What more information can we extract from the site?

Understanding the depositional history between the EQ events

- Using 51 single-grain FMM subpopulations from all 17 samples
- ❖ 8 age clusters likely indicate significant depositional periods in the past ~12 ka
- **Show good correspondence with the wetter than average Holocene climate intervals**

e.g., Akciz & Arrowsmith, 2013

Saha et al. (2021)

At least six major corresponding depositional periods may be identified in both the upstream & downstream deposits in the past 12 ka at MC

Take-home message

- . K-feldspar SG luminescence compliment ¹⁴C dating where reworking of charcoals are problematic, or suitable organic matters are absent
- II. It has the potentiality to date both the most recent and older depositional history
- III. That means, we can extract additional details about climate-controlled sediment flux and depositional history—the information in between EQ events
- IV. Wetter than average Holocene climate has the 1st order control on sediment deposition in southern California
- V. This has important implications for tectonic or paleoclimatic studies that rely on stratigraphic completeness, especially in terrestrial settings (e.g., Washburn et al., 2003; Le Béon et al., 2018)

Poster #088, San Andreas Fault System (SAFS)

Marina Argueta, S. Saha, S. Moon, N.D. Brown, T.K. Rockwell, K.M. Scharer, Z. Morgan, & J. Leidelmeijer.

Constraining long-term sediment depositional history at ancient Lake Cahuilla, Coachella, California

Future work

Finding better ways to develop more collaborations with Paleoseismologists, Paleoclimatologists, and other **Geochronologists** to extract additional information between earthquake events utilizing SG techniques