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3. Performance Test with Theoretical 1D Amplification Functions

Figure 3. Mean absolute error (MAE) during training on theoretical amplification functions.

2. ANN Design

1. Motivation and Scope

•Theoretical methods for prediction of site effects often fail due to modeling 
simplifications [e.g., 1]

•Data-informed site response models (site terms in GMPEs, empirical 
frequency-dependent site amplification functions, shallow neural networks) 
[2-4] typically approximate the soil profile using proxies (e.g. VS30, Z1.0, Z2.5)

• These proxies can be considered engineered features in traditional machine 
learning methods, which may not be needed in deep learning models.

•Our goal is to train a deep neural network that predicts site response directly 
from the full soil profile, without relying on proxies or simplifications.

•We use a fully connected artificial neural network (ANN) with 7 hidden layers, 
where the input layer consists of a discretized soil profile and frequency of 
amplification, while the output layer provides the surface-to-borehole 
amplification of two-component Fourier velocity spectra (Fig. 2).

•We work with theoretical and observed mean amplifications functions from 
vertical arrays in Japan (KiK-net) and California (CSMIP).

• 90% of sites were assigned to the training set and 10% to the test set (Fig. 1).

•Minibatch gradient descent was carried out using the 
Adam optimizer [5] to minimize the mean square 
logarithmic error between observed and predicted 
theoretical amplification functions (Fig. 3)

•Dropout regularization was used to reduce overfitting to 
the training data.  The dropout rate was adjusted to a 
value of 0.05 by trial and error.

• The mean absolute error (MAE) is 0.31 on the training 
and 1.07 on the test data.

• Theoretical 1D amplification functions for both training 
and test sites are reproduced by the ANN (Fig. 4)

5. Summary and OutlookFigure 2. Design of ANN for prediction of site amplification functions. Shear-wave velocities (vs, red 
nodes) are fed into the input layer at n discrete depths (a,c), along with the frequency f (green node). 
Hidden layers in (c) are shown by blue neurons. Where not all nodes are shown, the true number of 
nodes are given at the top of the layer. The output node contains the amplification Af at the specified 
frequency (b,c).  For results shown on the right, the vs profile was sampled at n=104 irregularly spaced 
depths to a maximum depth of 1,500 m.

4. Results from Observed Mean Amplification Functions
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Figure 4. Comparison between theoretical amplification functions (blue) and amplification functions predicted by the ANN (orange) for three randomly 
selected sites in (a) the training set and (b) the test set.
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•Mean site amplifications were computed from records with 
0.05 g < PGA < 0.2 g (excluding nonlinear effects).

• A MAE of 0.5 is obtained on training data derived from 
observed mean spectra (Fig. 5).  Validation and test errors 
are closer to 1.5.

• Amplifications of training sites are reproduced well (Fig. 6 
a), but the quality of the prediction at test sites varies (Fig. 
6 b). 

• Increasing the drop-out rate did not reduce this overfitting. Figure 5. Mean absolute error (MAE) during training on observed amplification functions.
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Figure 6. Comparison between observed mean amplification functions (blue) and amplification functions predicted by the ANN (orange) for randomly selected 
sites in (a) the training set and (b) the test set.  Solid green lines show theoretical 1D site amplification functions.

•A properly regularized ANN with multiple hidden layers can be trained to predict  
theoretical amplification functions for sites not included in the training set.

• Application of the method to observed amplification functions may produce 
predictions which are more reliable than theoretical amplification functions.  

•However, more work is needed to reduce overfitting and improve the ANN’s 
performance for the prediction of observed amplification functions. 
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Figure 1. Location of KiK-net sites 
assigned to training and test sets.
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