Fracture and aftershock distribution illuminate two styles of failure around faults
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Introduction Orientation
The Ridgecrest earthquake sequence struck in July 2019 rupturing a series of orthogonal right- 36 -
lateral and left-lateral faults in the best-monitored continental earthquake sequence to date. The — | I i I e i~ Rt .
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fractures and shallow aftershocks (<5 km) at the meter-scale to understand failure processes and | X o § | e . . » )
stress distribution around the main surface rupture. 58 g P . .
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| Left: Surface fractures mapped from the Ridgecrest lidar DEM (Hudnut et al., 2020). : Top: Spatial distribution of fracture (left) and nodal plane strike (right). lidar hillshade examples of orthogonal and
Right: Seismicity between July 4 and July 25, 2020 from the Ridgecrest QTM catalog (Ross et al., 2019). Bottom: Rose diagrams of fracture orientations (left) and nodal plane strike (right). conjugate fracture sets throughout the rupture.
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Left: slip gradients (dots) calculated over a 50m window and fracture density (boxes) calculated over

@ _ @ A zone where fracture and aftershock

a 5km window. Right: slip gradients (dots) and aftershock density (boxes). 101 density decay follow comparable inverse
We test whether slip gradients drive increases in fracture and aftershock density : power-laws102-10* meters away from the
around the main fault zone. We differentiate on-fault measurements of slip derived -f\\ﬂviﬁifgreeitngl'a&t%gn; width in fault.
from subpixel-correlation of optical imagery (Milliner et al., 2020 - in review), and low- ' ' ’ ' : Fo o= 104,1)6—1.2
pass filter (50m window) them to remove short-wavelength heterogeneity. 102 - Average inelastic zone width _ Ir
B in Barnhart et al. (2020) . 13
A Fracture density correlates very well with peak gradients for the magnitude 7.1 ; : fEo = 10°"x
surface rupture, and overall well for the remainder of the two rupture traces.
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Increased aftershock density still correlates with steep slip gradients but the 10° 10’ 107 10% 10* 10° aftershocks are influenced by the stress

Distance away from main rupture (m) field of the neighboring Coso Volcanic Field.

Fracture and aftershock decay with distance away from the fault. The
fractures are mapped from 0.5 m near-field and 1m far-field resolution lidar. We limit
our analysis to events with relocation errors below 100 m (Ross et al., 2019).

Material properties and aerial strain Discussion

correlation is a lot weaker than for the fractures. Slip gradient effects may be
limited to the very near-surface, influencing only the shallowest aftershocks.
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Left: Frequency distribution of fractures in dilatant strain. More cracks fall in the positive quadrants but fracture N icrg;nbelrrnngigledlg gi?éﬁaarnrcelguﬁ&c?rled) COn neCt
sets in areas of high positive and negative aerial strain are both present (inset maps from Milliner et al., (2020) in review). o gety, y

Right: Frequency distribution of aftershocks in compressive and dilatant strain. The strain maps get noisier with distance o ] to our fracture map analysis (green). .
from the fault and the aftershock locations are not precise enough for meaningful comparison. ° Oitancs ey from man e () @_absrp



