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, ~ Ihe 2019 Ridgecrest earthquakes occurred on a network of NE-striking sinistral and NW-striking dextral faults in the transition zone between the ECSZ and the

Walker Lane, both generally transtensional systems. Prior to the 2019 events, only about a third of the causative faults were represented in the Quaternary Fault and
Fold Database (QFFD), with a handful of additional parts mapped in gray literature. However, the QFFD in this area is compiled from various sources in which
mapping scale ranged from 1:750,000 to 1:24,000 and the purpose was not necessarily to identify active faults.

It is important to recognize that in
the area of the 2019 rupture, no
systematic attempt at assessing
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The July 2019 Ridgecrest earthquake sequence in southeastern California has
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basins. Fault expression may also be related to deformation style: scarps and
topographic lineaments are more prevalent in areas where substantial vertical
motion occurred in 2019. Where strike-slip displacement dominated in 2019, the
faults are mainly expressed by less prominent tonal and vegetation features. Both
the northeast- and northwest-trending active fault systems are subparallel to
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Figure 2. (a) Seismicity and previously mapped faults in the Ridgecrest area (QFFD; Roquemore and Zellmer,
1987). Seismicity displayed is from before the 2019 Ridgecrest Earthquake sequence. Location shown in Fig. 1. Figure 3. Examples of types of features mapped on the

features could help improve seismic hazard analyses in other regions of eastern
California and elsewhere that likely have distributed faulting or incompletely

southern California. Gray lines represent

active faults in the QFFD (USGS and CGS, and ground color. Outcrop-scale

mapped faults. In areas where faults cannot be resolved as single through-going 2019). (b) 2019 surface rupture traces from Ponti et al. (2020). Pink dots show paleoseismic trenches from pre-event 2-m DEM (distributed by Willis et al., 2019 on fleld observations additionally
structures, we recommend a zone of potential faulting should be used as a hazard Roquemore (1981) and green dot shows 2019 paleoseismic trench from Kozaci et al. (2019). Black polygon OpenTopography.org) and imagery (Google Earth; National :
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Figure 8: Examples of dextrally offset features and
other neotectonic observations from the northern
end of Salt Wells Valley. (a) Hillshade of 2-m DEM
with neotectonic features and late Pleistocene
shorelines. Yellow dots represent locations of field
observations. (b) Imagery illustrating ~300 m of
dextral offset of a bedrock ridge. (c) Imagery
illustrating dextral offset of channel. (d) and (e) field
photos illustrating dextral offsets of a channel
observed in the 2019 rupture, and larger dextral
offsets of terrace risers from older events.
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China Lake Playa area. (a) Uninterpreted China Lake Playa area. (a) Uninterpreted
slopeshade of the pre-event 2-m DEM and (b)  imagery; (b) previously mapped faults; (c)
pre-event imagery. (c) Interpreted neotectonic  interpreted neotectonic and other geologic

and other geologic features, previously features; and (d) 2019 M7.1 rupture traces with

mapped faults, and late Pleistocene pluvial mapped neotectonic and geologic features.
lake highstands. (d) 2019 M7.1 rupture traces

with mapped neotectonic and geologic
features.
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Figure 5. Vegetation lineaments and contrasts at
the northern end of the China Lake Basin. (a)
Pre-event imagery, (b) previously mapped faults;
(c) mapped scarps and vegetation lineaments
and contrasts; (d) 2019 surface rupture traces
superimposed on mapped features. (e) Field
photo of the 2019 rupture that occurred on a
pre-existing scarp. (f) Imagery detail illustrating
vegetation lineaments.

Examples illustrate a variety of fault expression, areas where
geologic fabrics obscured active structures, and the successes and
failures of previous mapping.
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alluvium and bedrock on a cross fault subparallel to the M6.4
rupture. Note lens cap for scale.

Figure 4. Map of neotectonic and other notable features in the vicinity of the 2019 earthquake ruptures. Brown polygon outlines mapped area. Inset shows

distribution of field observations. Pluvial lake highstand elevations in China and Searles Lake Basins are from Rosenthal et al. (2017). Figure 10. (a) Comparison of the 2019 rupture to faults previously mapped in the QFFD and by Roquemore and Zellmer,

1987. (b) Comparison of the 2019 rupture to the neotectonic features mapped in this study.

« M7.1: ~34% (18.5/55 km) in QFFD
additional ~4.3 km (8%) mapped by R&Z
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Evidence of previous late Quaternary activity is distributed along most of the 2019 surface ruptures and along additional

subparallel faults that did not rupture in 2019. These define a distributed network of orthogonal faults. . o .
« M6.4:~37% (7.7/21 km) in QFFD « M 6.4: ~59% pre-existing; ~53% obvious

Neotectonic features are more prominent outside pluvial lake basins and/or where vertical deformation is more significant.

In many areas, both the NE- and NW-striking faults appear to follow (and are likely reactivating) an older regional bedrock

- Most secondary traces also pre-existing
fabric. This fabric hampers recognition of active faults.

- Parts of a few secondary ruptures in QFFD

About 50% of the 2019 ruptures could have been recognized as active faults based on obvious
features alone, and some additional subtle features might have been recognized based on
position between or along strike from more prominent features. Active faults might also have
been correctly inferred even in areas with no features, connecting more well-expressed sections.

50-70% of the 2019 rupture traces could have been recognized as active faults if our analysis had been done before the
2019 events. Thus, the 2019 events would have been less surprising with appropriately systematic neotectonic mapping.
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Areas of distributed faulting such as this region are best represented by a fault zone polygon within which rupture is

. permitted anywhere, rather than a simplified single proxy fault. )




